Cogmaster CO8

TD n° 4 - jean.baccelli@ens.fr

4 mars 2014

Soit $X=\{x,...,z\}$ un ensemble. Soit $\Delta(X)=\{p:X\to[0,1]\mid \sum_{x\in X}p(x)=1\}$. $\Delta(X)$ sera appelé l'ensemble des options pour un décideur dans le risque. Chaque option $p\in\Delta(X)$ peut être décrite comme un vecteur de probabilité $(p_1,x_1\,;\ldots\,;p_n,x_n)\in[0,1]^n\times X$, avec $\forall i\in\{1,...,n\}, p_i\geq 0$ et $\sum_{i\in\{1,...,n\}}p_i=1$. Un décideur se conforme au modèle de l'utilité espérée dans le risque si ses préférences $\succcurlyeq\subseteq\Delta(X)\times\Delta(X)$ permettent de définir une fonction $u:X\to\mathbb{R}$ telle que $\forall p,q\in\Delta(X)$, avec $p=(p_1,x_1\,;\ldots\,;p_n,x_n),\,q=(q_1,y_1\,;\ldots\,;q_n,y_n)$:

$$p \succcurlyeq q \Leftrightarrow \sum_{i \in \{1,\dots,n\}} p_i u(x_i) \ge \sum_{i \in \{1,\dots,n\}} q_i u(y_i). \tag{1}$$

Exercice 1 Soit $X = \{0, ..., 100\}$ et un décideur dont on sait qu'il se conforme au modèle de l'utilité espérée dans le risque, avec u(0) = 0 et u(100) = 100. Supposant que pour ce décideur $(1,60) \sim (\frac{7}{10},100;\frac{3}{10},0)$, déterminez u(60). Quelle serait alors sa préférence entre $(\frac{7}{10},60;\frac{3}{10},0)$ et $(\frac{49}{100},100;\frac{51}{100},0)$?

Exercice 2 Soit $X = \{0, ..., 100\}$, et un décideur qui a les préférences : $(\frac{90}{100}, 50; \frac{10}{100}, 0) \succ (\frac{45}{100}, 100; \frac{55}{100}, 0)$ et $(\frac{1}{100}, 100; \frac{99}{100}, 0) \succ (\frac{2}{100}, 50; \frac{98}{100}, 0)$. Montrez algébriquement que ce décideur ne peut pas se conformer au modèle de l'utilité espérée dans le risque.

Exercice 3 Soit $X = \{0, ..., 100\}$. Soit $p, q, r, s \in \Delta(X) : p = (\frac{9}{10}, 49 ; \frac{1}{10}, 16)$, $q = (\frac{7}{10}, 81 ; \frac{3}{10}, 16)$, $r = (\frac{9}{10}, 100 ; \frac{1}{10}, 0)$ et $s = (\frac{1}{10}, 100 ; \frac{9}{10}, 81)$. Déterminez la préférence entre p et q d'une part, entre r et s d'autre part, pour un décideur qui se conforme au modèle de l'utilité espérée dans le risque avec $\forall x \in X$, a/u(x) = x, $b/u(x) = \frac{1}{2}x - 7$, $c/u(x) = \sqrt{x}$. Commentez. Revenant à (1), précisez quelle moitié du théorème d'unicité attaché au théorème de représentation de von Neumann - Morgenstern vous pouvez prouver algébriquement immédiatement, et quelle moitié resterait à prouver.

Exercice 4 Soit $X=\{x,y,z\}$. Dans ce cas, chaque $p\in\Delta(X)$ a la forme $p=(p_x,x\,;p_y,y\,;p_z,z)$. Montrez que $\forall p\in\Delta(X)$, vous pouvez exprimer p_y en fonction de p_x et p_z ie que chaque p est caractérisé par un couple (p_x,p_z) . On peut alors représenter chaque $p\in\Delta(X)$ comme un point dans un "triangle de Marschak - Machina": par exemple, on prendra un triangle rectangle isocèle avec y à l'angle droit, x au sommet nord, z au sommet est. Soit un décideur qui se conforme au modèle de l'utilité espérée dans le risque, dont on supposera aussi que $\delta_x \succ \delta_y \succ \delta_z$ [rappel: $\delta_x \equiv (1,x\,;0,y\,;0,z)$]. Montrez qu'alors, un ensemble d'indifférence du décideur apparaît comme une droite dans le triangle de Marschak - Machina, et que les différents ensemble d'indifférence du décideur apparaissent comme des droites parallèles. Pour cela, déterminez l'égalité caractéristique, dans le modèle de l'utilité espérée, d'un ensemble d'indifférence et tirez-en une expression, pour chaque ensemble d'indifférence $I(p) = \{q \in \Delta(X) \mid p \sim q\}$, de q_x en fonction de q_z .