Cogmaster CO8

TD n° 2 - jean.baccelli@ens.fr 18 février 2014

On change aujourd'hui, pour l'essentiel, de relation primitive : au lieu de partir d'une relation de "préférence large", on partira d'une relation de "préférence stricte" \succ , $\succ \subseteq X \times X$, qui par définition sera toujours asymétrique.

Exercice 1 Soit $\succ \subseteq X \times X$ une relation asymétrique de préférence. Prouvez que $si \succ est$ négativement transitive, alors elle est aussi transitive. Montrez par l'exemple que l'asymétrie et la transitivité n'impliquent pas la transitivité négative - prenez $X = \{w, x, y, z\}$

Exercice 2 Montrez par l'exemple que l'asymétrie et la transitivité négative sont logiquement indépendantes - prenez $X = \{x, y, z\}$.

Définition 1 indifférence, $2: soit \succ \subseteq X \times X$ une relation asymétrique de "préférence stricte". L'"indifférence", notée \sim , est le sous-ensemble d'incomplétude de \succ dans $X \times X: \sim = \{(x,y) \in X \times X \mid \neg x \succ y \land \neg y \succ x\}.$

Exercice 3 $Soit \succ \subseteq X \times X$ une relation de préférence asymétrique et négativement transitive. Vérifiez que l'indifférence associée est une relation d'équivalence, qui n'est pas vide. Comment interpréter cette indifférence, 2?

DÉFINITION 2 PRÉFÉRENCE LARGE : $soit \succ \subseteq X \times X$ une relation asymétrique de "préférence stricte". La "préférence large", notée \succcurlyeq , correspond au sous-ensemble de $X \times X$ défini ainsi : $\succcurlyeq = \{(x,y) \in X \times X \mid x \succ y \lor x \sim y\}$.

Exercice 4 $Soit \succ \subseteq X \times X$ une relation de préférence asymétrique. Prouvez que la relation de préférence large associée ne peut pas être incomplète quelle propriété au juste avez-vous utilisée à cette fin? Prouvez que si \succ est asymétrique et négativement transitive, alors \succcurlyeq est une relation transitive.

Exercice 5 Soit $\succcurlyeq \subseteq X \times X$ une relation primitive de "préférence large" réflexive, et \sim_1 la relation d'indifférence associée à \succcurlyeq suivant la définition 1. Soit $\succ \subseteq X \times X$ la relation de "préférence stricte" asymétrique associée à \succcurlyeq , et \sim_2 la relation d'indifférence qui est associée à \succ suivant la définition 2. Prouvez par l'exemple que quand \succcurlyeq n'est pas complète, $\sim_1 \neq \sim_2$ - prenez $X = \{x,y\}$. Prouvez par l'exemple que quand \succcurlyeq n'est pas complète, \sim_2 peut être intransitive - prenez $X = \{x,y,z\}$. Prouvez par l'exemple que quand \succcurlyeq n'est pas complète, même quand \sim_1 et \sim_2 sont toutes les deux transitives, il se peut que $\sim_1 \neq \sim_2$ - prenez $X = \{w,x,y,z\}$.