
CHAPTER 2

Impossible States at Work: Logical Omniscience
and Rational Choice

Mikaël Cozic�

Abstract

Logical omniscience is a never-ending problem in epistemic logic, the main model

of full beliefs. It is seldom noticed that probabilistic models of partial beliefs face

the same problem. As far as choice models are built on such doxastic models, they

necessarily inherit the problem as well. Following some philosophical (Hacking,

1967) and decision-theoretic (Lipman, 1999) contributions, we advocate the use of

nonstandard or impossible states to tackle this issue. First, we extend the non-

standard structures to the probabilistic case; an axiom system is devised, i.e. proved

to be complete with respect to nonstandard probabilistic structures. Second, we

show how to substitute weakened doxastic models for the idealized ones in choice

models, and discuss the questions raised by this ‘‘unidealization’’.

Keywords: Bounded rationality, epistemic logic, logical omniscience,
probabilistic logic.

JEL Classifications: D80, D81, D82

1. Introduction

Let us imagine an agent that could solve any stochastic decision process, what-
ever the number of periods, states and alternatives may be; that could find a Nash
equilibrium in any finite game, whatever the number of players and strategies
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may be; more generally that would have a perfect mathematical knowledge and,
still more generally, which would know all the logical consequences of his or her
beliefs. By definition, this agent would be described as logically omniscient.

For sure, logical omniscience is an highly unrealistic hypothesis from the
psychological point of view. Yet, this is the cognitive situation of agents in the
main current doxastic models, i.e. models of beliefs. The issue has been raised a
long time ago in epistemic logic (Hintikka, 1975, see the recent survey in Fagin
et al., 1995), which is the classical model of full beliefs. In particular, it has been
recognized that logical omniscience is one of the most uneliminable cognitive
idealizations, because it is an immediate consequence of the core principle of the
modeling: the representation of beliefs by a space of possible states.

What is the relevance for rational choice theory? A standard decision model
has three fundamental building blocks:

1. a model of beliefs, or doxastic model,
2. a model of desires, or axiological model, and
3. a criterion of choice, which, given beliefs and desires, selects the ‘‘appropri-

ate’’ actions.

In choice under uncertainty, the classical model assumes that the doxastic
model is a probability distribution on a state space, the axiological model a
utility function on a set of consequences and the criterion is the maximization of
expected utility. In this case, the doxastic model is a model of partial beliefs. But
there are choice models which are built on a model of full beliefs: this is the case
of models like maximax or minimax (Luce and Raiffa, 1985, Chapter 13), where
one assumes that the agent takes into account the subset of possible states that is
compatible with his or her beliefs.

The point is that, in both cases, the choice model inherits the cognitive ide-

alizations of the doxastic model. Consequently, the choice model is cognitively at

least as unrealistic as the doxastic model upon which it is based. Indeed, a choice
model is strictly more unrealistic than its doxastic model since it assumes fur-
thermore the axiological model and the implementation of the choice criterion.
Hence, one of the main sources of cognitive idealization in choice models is the
logical omniscience of their doxastic model; the weakening of logical omnis-
cience in a decision-theoretic context is therefore one of the main ways to build
more realistic choice models, i.e. to achieve bounded rationality.

Surprisingly, whereas there has been extensive work on logical omniscience in
epistemic logic, there has been very few attempts to investigate the extension of
the putative solutions to the probabilistic representation of beliefs (probabilistic

case) and to models of decision making (decision-theoretic case).1

1One important exception is Lipman (1999).
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The aim of this paper is to make some progress in filling this gap. Our
method is the following one: given that a huge number of (putative) solutions to
logical omniscience have been proposed in epistemic logic, we will not start from
scratch, but we will consider extensions of the main current solutions. Our main
claim is that the solution that we will call the ‘‘nonstandard structures’’ con-
stitute the best candidate to this extension.

The remainder of the paper proceeds as follows. In Section 2 the problem of
logical omniscience and its most popular solutions are briefly recalled. Then, it
shall be argued that, among these solutions, nonstandard structures are the best
basis for an extension to probabilistic and decision-theoretic cases. Section 3 is
devoted to the probabilistic case and states our main result: an axiomatization
for nonstandard explicit probabilistic structures. In Section 4, we discuss the
extension to the decision-theoretic case.

2. Logical omniscience in epistemic logic

2.1. Epistemic logic

Problems and propositions related to logical omniscience are best expressed in a
logical framework, usually called ‘‘epistemic logic’’ (see Fagin et al. (1995) for an
extensive technical survey and Stalnaker (1991), reprinted in Stalnaker (1998) for
an illuminating philosophical discussion), which is nothing but a particular in-
terpretation of modal logic. Here is a brief review of the classical model: Kripke
structures.

First, we have to define the language of propositional epistemic logic. The only
difference with the language of propositional logic is that this language contains a
doxastic operator B: Bf is intended to mean ‘‘the agent believes that f’’.

Definition 1. The set of formulas of an epistemic propositional language LBðAtÞ

based on a set At of propositional variables Form ðLBðAtÞÞ, is defined by 2

f ::¼ pj:fjf _ cjf ^ cjBf

The interpretation of the formulas is given by the famous Kripke structures.

Definition 2. Let LBðAtÞ an epistemic propositional language; a Kripke structure
for LBðAtÞ is a 3-tuple M ¼ ðS;p;RÞ where

(i) S is a state space,
(ii) p: At�S-{0, 1} is a valuation, and

(iii) RDS�S is an accessibility relation.

2This formulation (the so called Backus-Naur Form) means, for instance, which the propositional

are formulas, that if c is a formula, :c too, and so on.
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Intuitively, the accessibility relation associates to every state the states that the
agent considers possible given his or her beliefs. p associates to every atomic
formula, in every state, a truth value; it is extended in a canonical way to every
formula by the satisfaction relation.

Definition 3. The satisfaction relation, labelled � extends p to every formula of the

language according to the following conditions:

(i) M; s � p iff pðp; sÞ ¼ 1,
(ii) M; s � f ^ c iff M; s � f and M; s � c,
(iii) M; s � f _ c iff M; s � f or M; s � c,
(iv) M; s � :f iff M; saf, and
(v) M; s � Bf iff 8s0s:t: sRs0;M; s0 � f:

The specific doxastic condition contains what might be called the possible-state

analysis of belief. It means that an agent believes that f if, in all the states that
(according to him or her) could be the actual state, f is true: to believe something is

to exclude that it could be false. Conversely, an agent does not believe f if, in some
of the states that could be the actual state, f is false: not to believe is to consider

that it could be false. This principle will be significant in the discussions below.

Example 1. S ¼ {s1, s2 , s3, s4}; p (‘‘it’s sunny’’) is true in s1 and s2, q (‘‘it’s windy’’)
in s1 and s4. Suppose that s1 is the actual state and that in this state the agent

believes that p is true but does not know if q is true. Figure 1 represents this
situation, omitting the accessibility relation in the non-actual states.

Definition 4. Let M be a Kripke structure; in M, the set of states where f is true,

or the proposition expressed by f, or the informational content of f, is noted

½½j��Mfs :M; s � jg.

s1

s3

s2

s4

p, q

 q

p

Figure 1. Kripke structures
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To formulate logical omniscience, we need lastly to define the following seman-
tical relations between formulas.

Definition 5. f M-implies c if ½½f��M � ½½c��M.f and c are M-equivalent if
½½f��M ¼ ½½c��M.

There are several forms of logical omniscience (see Fagin et al., 1995); the next
proposition shows that two of them, deductive monotony and intensionality,
hold in Kripke structures:

Proposition 1. Let M be a Kripke structure and f, c A LBðAtÞ.

(i) Deductive monotony: if f M-implies c, then Bf M-implies Bc and

(ii) Intensionality: if f and c are M-equivalent, then Bf and Bc are

M-equivalent.

Both properties are obvious theorems in the axiom system K, which is sound
and complete for Kripke structures:

System K

(PROP) Instances of propositional tautologies
(MP) From f and f - c infer c
(K) Bf4B(f-c)-Bc
(RN) From f, infer Bf

2.2. Three solutions to logical omniscience

A huge number of solutions have been proposed to weaken logical omniscience,
and arguably no consensus has been reached (see Fagin et al., 1995).3 We iden-
tify three main solutions to logical omniscience, which are our three candidates
to an extension to the probabilistic or decision-theoretic case. There is probably
some arbitrariness in this selection, but they are among the most used, natural
and powerful existing solutions.

2.2.1. Neighborhood structures

The ‘‘neighborhood structures’’, sometimes called ‘‘Montague–Scott structures’’
are our first candidate. The basic idea is to make explicit the propositions that the
agent believes; the neighborhood system of an agent at a given state is precisely
the set of propositions that the agent believes.

3We have contributed to this industry by defending the use of substructural logics in Cozic (2006);

this setting is not tractable enough for the aim of the current paper.
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Definition 6. A neighborhood structure is a 3-tuple M ¼ ðS;p;V Þ where

(i) S is a state space,
(ii) p:At�S-{0, 1} is a valuation, and

(iii) V: S-Y((Y(S)), called the agent’s neighborhood system, associates to every

state a set of propositions.

The conditions on the satisfaction relation are the same, except for the do-
xastic operator:

M; s � Bf iff ½½f��M 2 V ðsÞ

It is easy to check that deductive monotony is invalidated by neighborhood
structures, as shown by the following example.

Example 2. Let us consider the first example and replace the accessibility relation

by a neighborhood system; V(s1) contains {s1, s2} but not {s1, s2, s3}. Then, in s1,

Bp is true but not B(p3q). This is represented in Figure 2.4

As expected, one can regain deductive monotony by closing the neighborhood
systems under supersets. Nonetheless, the axiomatization presented below5

makes clear that the power of neighborhood system is limited: intensionality
cannot be weakened.

System E (Chellas, 1980)

(PROP) Instances of propositional tautologies
(MP) From f and f-c infer c
(RE) From f2c infer Bf2Bc

2.2.2. Awareness structures

The second solution, due to R. Fagin and J. Halpern (1988),6 are the ‘‘awareness
structures’’. The basic idea is to put a syntactical filter on the agent’s beliefs. The
term ‘‘awareness’’ suggests that this can be interpreted as reflecting the agent’s
awareness state, but other interpretations are conceivable as well.

Definition 7. An awareness structure is a 4-tuple (S, p, R, A) where

(i) S is a state space,
(ii) p:At�S-{0, 1} is a valuation,

4This reccuring example is not chosen for its cognitive realism, but because it makes the comparison

of different solutions easy.
5The system E is strong and complete with respect to neighborhoods structures.
6What we call ‘‘awareness structures’’ is called in the original paper ‘‘logic of general awareness’’.
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(iii) RDS�S is an accessibility relation, and

(iv) A:S- Form ðLBðAtÞÞ is a function which maps every state in a set of for-

mulas (‘‘awareness set’’).

The new condition on the satisfaction relation is the following:

M; s � Bf iff 8s0 s:t: sRs0 2 ½½f��M and f 2 AðsÞ

This new doxastic condition permits to weaken any form of logical omniscience;
in particular, our example shows how to model an agent who violates deductive
monotony.

Example 3. Let us consider our example and stipulate that A(s1) ¼ { p}. Then it is

still the case that Bp is true in s1, but not B( p3q). This is represented in Figure 3.

If one keeps the basic language LBðAtÞ, one obtains as axiom system a min-
imal epistemic logic which eliminates any form of logical omniscience:

s1

s3

s2

s4

p, q

 q

p

V(s1) 
= 

{{s1 , s2 }}

Figure 2. Neighborhood structures

s1

s3

s2

s4

p, q

 q

p

A(s1) = {p}

Figure 3. Awareness structures
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Minimal Epistemic Logic (FHMV, 1995)

(PROP) Instances of propositional tautologies
(MP) From fand f - c infer c

2.2.3. Nonstandard structures

We now switch to our last solution: the nonstandard structures, which are
sometimes called ‘‘Kripke structures with impossible states’’. Contrary to the
two preceding solutions, neither the accessibility relation nor the doxastic con-
dition are modified. What is revised is the underlying state space or, more pre-
cisely, the nature of the satisfaction relation in certain states of the state space.

Definition 8. A nonstandard structure is a 5-tuple M ¼ ðS;S0; p;R;�Þ where

(i) S is a space of standard states,
(ii) S0 is a space of nonstandard states,

(iii) R D S[S0 �S[S0 is an accessibility relation,
(iv) p :Form ðLBðAtÞÞ � S! f0; 1g is a valuation on S, and

(v) � is a satisfaction relation which is standard on S (recursively defined as

usual) but arbitrary on S0.

In nonstandard structures, there are no a priori constraints on the satisfaction
relation in nonstandard states. For instance, in a nonstandard state s’, both f and
:f can be false. For every formula f, one might therefore distinguish its objective

informational content ½½f��M ¼ fs 2 S :M; s � fg from its subjective informational

content ½½j���M ¼ fs 2 S� ¼ S [ S0 :M; s � fg. In spite of appearances, this gen-
eralization of Kripke structures is arguably natural as soon as one accepts the
possible-state analysis of beliefs. Recall that, according to this analysis,

� to believe that f is to exclude that f could be false and
� not to believe that c is not to exclude that c could be false.

In consequence, according to the possible-state analysis, to believe that f but
not to believe one of its logical consequences c is to consider as possible at least
one state where f is true but c false. By definition, a state of this kind is logically
nonstandard. Nonstandard structures is the most straightforward way to keep
the possible-state analysis of beliefs.7

Example 4. Let us consider our example but add a nonstandard state in S0 ¼ {s5};
we stipulate that M, s5 � p, but that M; s5 � ð p _ qÞ. Then in s1, Bp is true but not

B ð p _ qÞ. This is represented in Figure 4.

7For a more extensive defense of the solution, see Hintikka (1975) or, more recently, Barwise (1997).
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3. The probabilistic case

Mainstream decision theory is based on doxatic models of partial beliefs, not of
full beliefs. Hence weakenings of logical omniscience in the framework of do-
xastic logic does not give directly a way to weaken logical omniscience that is
appropriate for decision theorists. The aim of this section is to study the pro-
babilistic extension of doxastic models without logical omniscience.

3.1. Probabilistic counterpart of logical omniscience

First, we have to define the probabilistic counterparts of logical omniscience. In
the usual (non-logical) framework, if P is a probability distribution on S,8 then
the following property is the counterpart of logical omniscience: if E � E0; then
PðEÞ � PðE0Þ.

But to be closer to the preceding section, it is better to work with an
elementary 9 logical version of the usual probabilistic model:

Definition 9. Let LðAtÞ a propositional language; a probabilistic structure10 for

LðAtÞ is a 3-tuple M ¼ ðS;p; pÞ where

(i) S is a state space,
(ii) p is a valuation, and

(iii) P is a probability distribution on S.

s1

s3

s2

s4

p, q

 q

p

s5

Figure 4. Nonstandard structures

8 In the paper, to avoid complications that are unnecessary for our purpose, we suppose that S is

finite and that P is defined on Y(S).
9 ‘‘Elementary’’ because there is no doxastic operator in the object-language.
10See Fagin and Halpern, (1991). For a recent reference on logical formalization of probabilistic

reasoning, see Halpern (2003).
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We will say that an agent believes to degree r a formula f 2 Form ðLðAtÞÞ,
symbolized by CP(f) ¼ r, if Pð½½f��MÞ ¼ r .11 We can state the precise probabi-
listic counterparts of logical omniscience:

Proposition 2. The following holds in probabilistic structures:

(i) deductive monotony: if f M-implies c, then CP(f)rCP(c) and

(ii) intensionality: if f and c are M-equivalent, then CP(f) ¼ CP(c).

One can check that these are indeed the counterparts of logical omniscience by
looking at the limit case of certainty, i.e. of maximal degree of belief: (i) if an
agent is certain that f and if f M-implies c, then the agent is certain that c as
well; (ii) if f and c are M-equivalent, then an agent is certain that f iff he or she
is certain that c.

Which of the three solutions to choose for this extension?
(a) First, we should eliminate neighbordhood structures because their power

is limited: intensionality is a too strong idealization. This is especially sensitive in
a decision context, where, under the label of ‘‘framing effects’’, it has been
recognized for a long time that logically equivalent formulations of a decision
problem could lead to different behaviors.

(b) Second, the extension of awareness structures seems intrisically tricky. Sup-
pose that an agent believes f to degree rf and c to degree rc with f M-implying
c and rf>rc. This is a failure of deductive monotony. Now, in an analogous
situation, the way awareness structures proceed in epistemic logic is by ‘‘dropping’’
the formula c. Let us apply this method to the probabilistic case: we would say that
an agent believes that f to degree r if Pð½½f��ÞMÞ ¼ r and he or she is aware of f.
But no one could model a situation like the preceding one: either the agent is aware
of c and in this case necessarily he or she believes that c to a degree rcZ rf; or he
or she is not aware of c, and it this case he or she has no degree of belief toward c.
This is not a knock-down argument, but it implies that if one wants to extend
awareness structures, one has to make it substantially more sophisticated.

(c) Lastly, the extension of awareness structure is problematic in our per-
spective, i.e. a perspective of decision-theoretic application. To see why, let us
notice that a criterion choice like expected utility might be seen as a function
whose first argument is a doxastic model and second argument an axiological
model. If we would extend the awareness structures, the first value of an ex-
pected utility criterion would not be any more a simple probability distribution.
Consequently, we should have to revise our choice criterion. For sure, nothing
precludes such a move, but simplicity recommends another tactic.

We are therefore left with nonstandard structures. Nonstandard structures
do not suffer from the above-mentioned troubles: they are as powerful as one

11Note that CP(f) ¼ r is in the meta-language, not in the object-language.
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can wish, the extension is intrinsically simple and they should permit to keep
usual choice criterion when embedded in a choice model. This is our motivation,
but now we have to turn to positive arguments.12

3.2. Nonstandard implicit probabilistic structures

To give the basic insights and show the fruitfulness of the proposition, we will
continue to work in the elementary setting where no doxastic operators are in
the object-language.

Definition 10. Let LðAtÞ a propositional language; a non-standard implicit pro-
babilistic structure for LðAtÞ is a 5-tuple M ¼ ðS;S0;p �;PÞ where

(i) S is a standard state space,

(ii) S0 is a nonstandard space,

(iii) p : Form (L(At))�S-{0, 1} is a valuation on S,

(iv) F is a satisfaction relation which is standard on S but arbitrary on S0, and

(v) P is a probability distribution on Sn ¼ S [ S0.

As in the set-theoretic case, one can distinguish the objective informational
content of a formula, i.e. the standard states where this formula is true, and the
subjective informational content of a formula, i.e. the states where this formula
is true.

To obtain the expected benefit, the nonstandard probabilistic structures
should characterize the agent’s doxastic state on the basis of subjective infor-
mational content: an agent believes a formula f to degree r, CPðfÞ � r, if
Pð½½f���MÞ ¼ r. It is easy to check that, in this case, logical omniscience can be
utterly controlled.

Example 5. Let us take the same space state as in the preceding examples. Sup-

pose that the agent has the following partial beliefs: CPðpÞ4CPðp _ qÞ. This can

be modeled in the following way: S0 ¼ {s5}, s5 2 ½½p��
�
M but s5e½½p _ q���M;Pðs1Þ ¼

Pðs2Þ ¼ Pðs3Þ ¼ Pðs4Þ ¼ 1=8 and Pðs5Þ ¼ 1=2. This is represented in Figure 5.

3.3. Special topics: deductive information and additivity

This extension of nonstandard structures is admittedly straightforward and
simple. It gives immediately the means to weaken logical idealizations. Fur-
thermore, it opens perspectives specific to the probabilistic case; two of them will
be briefly mentioned.

12A similar idea has been defended a long time ago by I. Hacking who talks about ‘‘personal

possibility’’, by contrast with ‘‘logical possibility’’. We will not develop the point here, but this

contribution can be seen as a formalization of Hacking’s insights (Hacking, 1967).
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Deductive information and learning. First, one can model the fact that an
agent acquires not only empirical information but deductive information; in
nonstandard structures, this corresponds to the fact that the agent eliminates

nonstandard states.
Let us come back to our generic situation. Suppose that our agent learns that

f implies c. This means that he or she learns that the states where f is true but c
false are impossible. This is equivalent to say that he or she learns the event

I ¼ S� � ð½½f���M � ½½c��
�
MÞ

To be satisfying, such a notion of deductive information must respect a re-
quirement of compatibility between revising and logical monotony: if the agent
learns that f implies c and revise his or her beliefs upon this fact, his or her
new probability distribution should conform to logical monotony with respect to
f and c. One can check that it is the case with the main revising rule, i.e.
conditionalization.

Proposition 3. If I is learned following the conditionalization, then deductive mo-

notony is regained, i.e. CPI (f)rCPI (c).

Example 6. This can be checked in the preceding example: I ¼ S ¼ fs1; s2; s3;s4g.
By conditionalization, CPI ð pÞ ¼ 1=2 whereas CPI ð p _ qÞ ¼ 3=4.

Additivity. A second topic is additivity. From a logical point of view, one can
define additivity as follows:

Definition 11. M is (logically) additive if, when f and c are logically incompat-

ible, CP(f)+CP(c) ¼ CP(f3c).

s1

s3

s2

s4

p, q
1/8

 q

1/8

p
1/8

s5

π(p      q, s5) = 0

1/2

∨

1/8

Figure 5. Probabilistic non-standard structures
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Additivity is of course the core of the probabilistic representation of beliefs,
and alternative representations of beliefs depart often from probability on
this point. For example, in the Dempster–Shafer theory (Shafer, 1976), the
so-called belief function is superadditive (in our notation, CP _ ðf _ cÞ 	
CPðfÞ þ CPðcÞÞ whereas its dual, the plausibility function, is subadditive
CP(f3c)rCP(f)+CP(c)).

A noteworthy aspect of probabilistic nonstandard structures is that the free-
dom of the connectives’ behavior in nonstandard states permits us to have a very
flexible framework with respect to additivity: simple conditions on the connec-
tives imply general properties concerning additivity.

Definition 12. Let M ¼ ðS;S0;p;�;PÞ a nonstandard probabilistic structure; M is

_ -standard if for every formulas f;c; ½½f _ c���M ¼ ½½f��
�
M [ ½½c��

�
M:

This means that the disjunction behaves in the usual way in nonstandard
states; a trivial consequence of this is that the structure M is (logically) sub-
additive.

Proposition 4. If M is 3-standard, then it is (logically) subadditive.

To be a little bit more general, one can consider the (logical) inclusion–
exclusion rule:

CPðf _ cÞ ¼ CPðfÞ þ CPðcÞ � CPðf ^ cÞ

One can define (logical) submodularity (respectively supermodularity or con-
vexity) as: CPðf _ cÞ � CPðfÞ þ CPðcÞ � CPðf ^ cÞ (respectively CPðf _ cÞ 	
CPðfÞ þ CPðcÞ � CPðf ^ cÞÞ: It is clear that to control submodularity, we have
to control the conjunction’s behavior.

Definition 13. Let M ¼ ðS;S0;p;�;PÞ a probabilistic nonstandard structure;

(i) M is negatively 4-standard if for every formulas f, c, when , M; s jf , or

M; s jc, then M; s jf ^c.
(ii) M is positively 4-standard if for every formulas f, c, when M; s � f, or

M; s � c; then; M; s � f ^ c.

Proposition 5. Suppose that M is 3-standard;

– if M is negatively 4-standard, then submodularity holds

– if M is positively 4-standard, then supermodularity holds

Proof: see the Appendix.
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3.4. Nonstandard explicit probabilistic structures

Implicit probabilistic structures are not very expressive; to have a true analogon
of epistemic logic, we have to start from an object-language that contains (par-
tial) doxastic operator.

Following Aumann (1999) and Heifetz and Mongin (2001), we consider the
operator La.

13,14 The intuitive meaning of Laf is: the agent believes at least to
degree a that f. Note that we add the usual symbols >;?: > is what the agent
recognizes as necessarily true and ? is what he or she recognizes as necessarily
false.

Definition 14. The set of formulas of an explicit probabilistic language LLðAtÞ

based on a set At of propositional variables, Form ðLLðAtÞÞ is defined by:

f ::¼ pj ? j>j:fjf _ cjLaf

where P 2 At and a 2 ½0; 1� � Q.

The corresponding structures are an obvious extension of implicit nonstandard
structures.

Definition 15. A nonstandard explicit probabilistic structure for LLaðAtÞ is a 5-

tuple M ¼ ðS;S0; p;�;PÞ where

(i) F is a satisfaction relation s.t.

(a) F is standard on S for all propositional connectives,

(b) 8s 2 S; M; s � La f iff PðsÞð½½f���MÞ 	 a; and
(c) 8s 2 S [ S0;M; s � > and M; s| 6¼ ?.

(ii) P:S*-D(S*) assigns to every state a probability distribution on the state

space.

In Aumann (1999), R. Aumann has failed to axiomatize (standard) explicit
probabilistic structures, but Heifetz and Mongin (2001) have recently devised an
axiom system that is (weakly) complete for these structures. In comparison with
epistemic logic, one of the problems is that the adaptation of the usual proof
method, i.e. the method of canonical models, is not trivial. More precisely, in the
epistemic logic’s case, it is easy to define a canonical accessibility relation on the
canonical state space. This is not case in the probabilistic framework, where
strong axioms are needed to guarantee that. Fortunately, the nonstandard
structures permit huge simplifications, and one can devise an axiom system that
essentially mimics the Minimal Epistemic Logic above described.

13Economists are leading contributors to the study of explicit probabilistic structures because they

correspond to the so-called type spaces used in games of incomplete information, in the same way

that Kripke structures (with R as an equivalence relation). See Aumann and Heifetz (2002).
14Note that another language is used by J. Halpern in Fagin and Halpern (1991) or Halpern (2003).
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Minimal Probabilistic Logic

(PROP) Instances of propositional tautologies
(MP) From fand f - c infer c

(A1) Laf
(A2) La>
(A2+) : La ? ða4 0Þ
(A7) Laf!Lbf ðbo aÞ

The axioms’ notation follows Heifetz and Mongin (2001) to facilitate com-
parison. Axioms (A2) and (A2+) reflect our semantic for > and ?: the agent
believes to maximal degree what he or she considers as necessarily true and does
not believe to any degree what he or she considers as necessarily false. (A1) and
(A7) reflect principles specific to the probabilistic case. Note that both bear on a
single embedded formula f: there is no doxastic reflection of a logical relation.
They express something like a minimal metric of partial beliefs.

If F NSEPS f means that f is true in every nonstandard explicit probabilistic
structure and ‘MPL f that f is provable in the Minimal Probabilistic Logic, then
we are ready to state our main result:

Theorem 1. (Soundness and Completeness of MPL)

�NSEPS f iff ‘MPLf

Proof: see the Appendix.

4. Insights into the decision-theoretic case

We would like to end this paper by showing how to build choice models without
logical omniscience, and which are the challenges raised by such a project.

4.1. Choice models without logical omniscience

The basic method to build a choice model without logical omniscience is to
substitute one of our nonstandard structures to the original doxastic model in the
target choice model. We will now show how this could be done.

One might generically see models of choice under uncertainty as based on

� a state space S,
� a set A of actions,
� a consequence function C: S � A! C where C is a set of consequences,
� a utility function u: C! R, and
� a criterion of choice.
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To complete the choice model, one adds a distribution P on S for models of
choice under probabilistic uncertainty, and a set K � S of states compatible with
the agent’s beliefs under set-theoretic uncertainty.

To rigourously extend nonstandard structures to choice models, one should
translate the above described notions in a logical setting. But to give some in-
sights, we will, on the contrary, import nonstandard structures in the syntax-free
framework of conventional decision theory. Let us have a look at the following,
admittedly particular, target situation: an agent knows abstractly the conse-
quence function C, but, because of limited computational capacities, he or she is
not able, at the moment of choice, to perfectly infer from the choice function the
consequence of each action at each possible state. One can think about a classic
two-state example of insurance application.15 The consequence function is

Cðs1; xÞ ¼ w� px

Cðs2; xÞ ¼ yþ x,

where x, the choice variable, is the amount of money spent in insurance, s1 the
state without disaster, w the wealth in s1, s2 the state with a disaster and y the
subsequent wealth, and p the rate of exchange. In this case, a nonlogically om-
niscient agent with respect to the consequence function would be such that he or
she ignores the value of C for some arguments.

A simple way to model this target situation would be the following one.
Let us consider extended states w, which are composed of a (primitive) state s
and a local consequence function Cw : A! C : w ¼ ðs; CwÞ. The set of extended
states is intended to represent the beliefs of the agent, including his or her
logically imperfect beliefs. An extended state is standard if its local consequence
function is conform to the (true) consequence function: CwðaÞ ¼ Cða; sÞ; if not, it
is nonstandard.

For instance, a logically imperfect agent could not know what is the con-
sequence of action a in state s, thinking that it is possible that this consequence is
ci (let us say, the true one) or cj. This situation would be modeled by building (at
least) two extended states:

wi ¼ ðs;CwiÞ where CwiðaÞ ¼ ci and

wj ¼ ðs;CwjÞ where CwjðaÞ ¼ cj.

A perfect logician would not have considered a possible state like wj. On
this basis, one can build choice models without the assumption of logical
omniscience:

– in the case of choice under set-theoretic uncertainty, if one takes the maximin
criterion, for a belief set K �W , the solution is

15From Lippman and McCall (1981).
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SolðA;S;W ;C;C;E; u;K Þ ¼ argmaxa2Aminw2K uðCwðaÞÞ; and

– in the case of choice under probabilistic uncertainty, if one takes the maximization
of expected utility criterion, for a probability distribution P on W, the solution is

SolðA;S;W ;C;C;E; u;PÞ ¼ argmaxa2A

X

w2W

PðwÞ:uðCwðaÞÞ.

4.2. Open questions

From the decision theorists point of view, the substitution we have just described
is only a first step. Two fundamental questions remain.

(a) First, there is the question of the axiomatization of the new choice models,
i.e. closely linked with the behavioral implications of choice models without
logical omniscience. In a recent paper, B. Lipman (Lipman 1999) has remarkably
tackled this issue, advocating a very similar approach. But the choice model he
uses is quite specific (conditional expected utility), and one would like to compare
choice models based on nonstandard structures with the savagean benchmark.

More precisely, one would like to obtain a representation theorem à la Sav-
age: define conditions on a preference relation k such that there exists (1) a
space of extended states W, (2) a probability distribution P on W and (3) a utility
function u such that the preference relation could be rationalized by the expected
utility defined over preceding notions.

(b) Second, the nonstandard choice models weaken only the cognitive as-
sumptions of the (underlying) doxastic model. But there remains cognitive as-
sumptions concerning the utility function and the choice criterion. In the
approach we just described, we still assume that the agent is able to assign a
precise utility to each consequence c 2 C and to calculate the solution to its
choice criterion. Therefore, from the point of view of the bounded rationality
program, our proposition is strongly incomplete.

5. Conclusion

This paper has advocated the use of nonstandard or impossible states as a
general framework to ‘‘unidealize’’ belief and choice models. This admittedly
does not permit a complete treatment of the idealizations underlying conven-
tional choice models, but can be seen as a first step toward a fine-grained
modeling of bounded rationality.
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Appendix:

Proof of Proposition 5 The proof deals only with the case of submodularity; the
other is symmetric. If [[f]]* and [[c]]* are disjoint, then by hypothesis
½½f ^ j�� ¼+��. Therefore CPðf _ cÞ ¼ CPðfÞ þ CPðcÞ � CPðf ^ cÞ.

It follows from the definition that ifM; s � c ^ f, then M; s � c and M; s �

f (the converse does not hold). In other words,

(1) ½½f ^ c��� � ½½f��� \ ½½c���.
This implies that
(2) Pð½½f ^ c���Þ � Pð½½f��� \ ½½c���Þ.

Since M is 3-standard, Pð½½f _ c���Þ ¼ Pð½½f���Þ þ Pð½½f���Þ � Pð½½f���\
½½c���Þ. By (2), it follows from this that

Pð½½f _ c���Þ � Pð½½f���Þ þ Pð½½f���Þ � Pð½½f ^ c���Þ.

’

Proof of Theorem 1

() ). Soundness is easily checked and is left to the reader.
(( ). We have to show that F NSEPS f implies ‘ MPL f. First, let us notice

that the Minimal Probabilistic Logic (MPL) is a ‘‘modal logic’’ (see Blackburn
et al., 2001, p. 191): a set of formulas (1) that contains every propositional
tautologies and (2) that is closed by modus ponens and uniform substitution. One
can then apply the famous Lindenbaum Lemma.

Definition 16.

(i) A formula f is deducible from a set of formulas G, symbolized G ‘ f , if there

exists some formulas c1, y, cn in G s.t. ‘ (c1 4y 4 cn)-f.
(ii) A set of formulas G is 4-consistent if it is false that G ‘ 4?.
(iii) A set of formulas G is maximally 4-consistent if (1) it is 4-consistent and

(2) if it is not included in a 4-consistent set of formulas.

Lemma 1. (Lindenbaum Lemma) If G is a set of 4-consistent formulas, then

there exists an extension G+ of G that is maximally 4-consistent.

Proof: see for instance Blackburn et al. (2001, p. 199).

Definition 17. Let f 2 L ; the language associated with f, Lf is the smallest

sublanguage that
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(i) contains f; ? et >,
(ii) is closed under sub-formulas, and

(iii) is closed under the symbol 
 defined as follows: 
 w: ¼ c if w ¼ :c and 


w: ¼ :w if not.16

In the language Lf, one can define the analogon of the maximally ^-consistent
sets.

Definition 18. An atom is a set of formulas in Lf which is maximally 4-consistent.

At(f) is the set of atoms.

Lemma 2. For every atom G,

(i) there exists an unique extension of G in L, symbolized G+, that is maximally
^-consistent and

(ii) G ¼ G+
\Lf.

Proof. (i) An application of Lindenbaum Lemma. (ii) Implied by the fact that
G is maximally coherent. Suppose that there exists a formula c from Lf in G+

but not in G, then G+would be inconsistent, i.e. excluded by hypothesis. ’

Starting from atoms, one may define the analogon of canonical structures,
i.e. structures where (standard) states are sets of maximally ^-consistent for-
mulas. In the same way, we will take as canonical standard state space the
language’s Lf atoms.

The hard stuff is the definition of the probability distributions. The aim is to
make true in sG every formulaLaw in the atom G associated with the state sG. To
do that it is necessary that P(sG, w)Z a; this is guaranted if one takes for P(sG, w)
the number b* s.t. b* ¼ max{b :Lbbw A G}. This can easily be done with non-
standard states. It will be the case if (1) the support of P(sG,.) is included in the
set of non-standard states, (2) P(sG,.) is equiprobable and (3) there is a pro-
portion b* of states that make w true.

Suppose that I (G) is the sequence of formulas in G that are prefixed by a
doxastic operator La; for every formula, one can rewrite b*(w) as pi/qi. Define
qðGÞ ¼ Pi21 qi; qðGÞ will be the set of nonstandard states in which P(sG,.) will be
included. If the ist formula is w, suffice it to stipulate that w in the first pi�P q – i

states. One may check that the proportion of states w is true is pi/qi.

Definition 19. The f-canonical structure is the structure MfðSf;S0;pf;�f;PfÞ

where

(i) Sf ¼ {sG: GAAt (f)},
(ii) S0f ¼

S
GAAt(f) q(G),

16See Blackburn et al. (2001, p. 242).
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(iii) for all standard state, pf (p, sG) ¼ 1 iff p A sG,

(iv) for all nonstandard state Mf; s�f c iff, if sAq(G) and c is the i-st formula

prefixed by a doxastic operator in G, then s is in the pi�Pq– i first states of

q(G), and

(v) Pf (sG,.) is an equiprobable distribution on q(G).

As expected, the f-canonical structure satisfies the Truth Lemma.

Lemma 3. (Truth Lemma) For every atom G, Mf , sGF c iff cAG.

Proof. The proof proceeds by induction on the length of the formula.

(a) : ¼ p; follows directly from the definition of pf.
(b) c ¼ c1 3 c2; by definition, Mf; s�fc iff Mf; s�fc1 or Mf; s�fc2. Case (b)

will be checked if one shows that c13c2AG iff c1AG or c2AG. Let us
consider the extension G+ of G; one knows that c13c2AG+ iff c1AG+ or
c2AG+. But G ¼ G+

\Lf and c1 and c2ALf. It follows that sG � c1 _ c2 iff
c1 _ c2 2 G.

(c) c ¼ :w. Mf, s � f :w iff Mf, sjfw iff (by induction hypothesis) weG.
Suffice it to show that weG iff :wAG. (i) Let us suppose that weG; w is in Lf

hence, given the properties of maximally 4-consistent sets, :w AG+. And
since G ¼ G+

\Lf, :w AG. (ii) Let us suppose that :w AG; G is coherent,
therefore w eG.

(d) c ¼Law; by definition sG �Law
_ iff P(sG, w)Za. (i) Let us suppose that

P(sG, w)Za; then arb* where bn
¼ maxfb :L 2 Gg since by definition of the

canonical distribution, P(sG, w) Zb*. Now, let us consider the extension G+:
clearly, Ln

bw 2 Gþ. In virtue of axiom (A7) and of the closure under modus

ponens of maximally 4-consistent sets, La 2 Gþ. Given that by hypothesis
Law 2 Lf, this implies that Law 2 G. (ii) Let us suppose that Law 2 G; then
arb* hence P(sG,w)Za. ’

To prove completeness, we need a last lemma.

Lemma 4. Let At(f) the set of atoms in Lf;

AtðfÞ ¼ fD \Lf : D is maximally coherentg.

Proof. At(f)D{D\Lf:D is maximally coherent} follows from a preceding
lemma. Let G+ a maximally consistent set and G ¼ G+

\Lf. We need to show
that is maximally consistent in Lf. First G is consistent; otherwise, G+ would not
be. Then, we need to show that is Gmaximal, i.e. that for every formula cALf, if
G[{c} is consistent, then cAG. Let c such a formula. Let us recall that G+ is
maximally consistent. Either cAG+ and then cAG; or :cAG+ (elementary
property of maximally consistent sets) and, if c ¼ :w, wAG+ as well. Hence, by
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definition of Lf, w or ::wAG. But this is not compatible with the initial hy-
pothesis according to which G[{f} is consistent. ’

We can now finish the proof: Let f a LPM-consistent formula. Then, there
exists a maximally LPM-consistent set G+ which contains f. Let G ¼ G+

\Lf. f
is in G therefore by the Truth Lemma, f is true in state sG of the f-canonical
structure. Then f is satisfiable. ’
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