Comments on "Conditional propensities, probabilistic dependence and causality

Mikaël Cozic mikael.cozic@ens.fr

IHPST (Paris I-ENS Ulm-CNRS) GREGHEC (HEC-CNRS) & DEC (ENS Ulm)

> PALMYR VII 07/10/2008

> > イロト イ押ト イヨト イヨトー

æ

Mikaël Cozic

overview

- two main ideas in Isabelle's talk :
- 1 a similarity-based propensity interpretation of conditional probability

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

- 2 an application to (probabilistic) causal dependence
- I will discuss each idea in turn...

an agenda for interpretations of conditional probability

- 1 propensity interpretation: the probability $P_S(E)$ of *E* relatively to a set of physical conditions *S* is the measure of the tendency of *S* to produce *E*
- 2 conditional probability P(E|C) = the probability of *E* given that *C* is the case
- 3 Ratio Formula : P(E|C) = P(CE)/P(E)
- what are the issues for an tentative interpretation of probability ?

Pb1 : what does mean the probability of *E* given that *C* is the case ? Pb2 : does the interpretation allow a derivation or justification of the ratio formula ?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- ► frequentist interpretation: P_p(E) w.r.t. a population (reference class) p is the proportion of individuals in p which are E
- meaning of conditional probability: P_p(E|C) = the proportion of individuals in p which are E among those that are C
- you can derive the Ratio Formula
- analogous remarks for bayesian interpretation : P(E|C) is your degree of belief in E on the supposition that C is the case

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

meaning of conditional probability

Isabelle's answer to Pb1: similarity-based propensity interpretation of conditional probability: P_S(E|C) = the probability of E given that C is the case is the measure of the tendency of S^C to produce E where S^C is the most similar system to S that satisfies P(C) = 1

first set of questions

Question 1. on the similarity relation

a. why should there be a unique S^{C} ? is this just a simplification?

- if no, strong commitment ;

- if yes, not easy to see how to provide a truly propensity interpretation for conditional probability

b. do you conceive similarity relations as objective ?

if no, this seems to threaten the project of founding mind-independent interpretation to probability
if yes, this seems to reinforce the criticisms against propensity interpretation according to which it is ontologically too heavy (Nature populated by measurable tendencies, etc)

the Ratio Formula

- ► Q2: Isabelle does not derive or justify the Ratio Formula. Have we any reason to believe that $P_S(E|C) = P_{S^C}(E) = P_S(CE)/P_S(C)$?
 - defined for zero-probability C
 - maybe for some F s.t. $P_S(F) = 1$, $P_{S^C}(F) \neq 1$ (contradicts ratio formula)
- Jeffrey : conditionalization is characterized by Certainty (P_C(C) = 1) and Invariance Invariance =

 $P_{\mathcal{S}}(\mathcal{C}\mathcal{E})/P_{\mathcal{S}}(\mathcal{C}) = P_{\mathcal{S}^{\mathcal{C}}}(\mathcal{C}\mathcal{E})/P_{\mathcal{S}^{\mathcal{C}}}(\mathcal{C}) = P_{\mathcal{S}^{\mathcal{C}}}(\mathcal{C}\mathcal{E})$

the ratio of the tendency of S to produce CE on the tendency of S to produce C equals the tendency to the most similar system to S where P(C) = 1 to produce CE ; why should be it so ?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

second set of questions

Question 2. on the ratio formula

- a. do you think nevertheless that the ratio formula is or could be justified by your interpretation ?
- b. if not, do you think that it is a problem ?
- c. do you think that Jeffrey's notion of Invariance could help at least to clarify the issue ?

causal dependence

- let's turn no to causal dependence
- Isabelle's proposal: C causes E iff
- C1 C and E occur
- C2 $P_{S^{C},t_{C}+}(E) > P_{S^{\neg C},t_{C}+}(E)$
 - cf. Lewis (1973) : "without the cause, the effect would have been very much less probable". Isabelle's view mixes intuitions from two main families of causality theory, probabilistic and counterfactual

third set of questions

- Question 3. on the characterization of causation
- a condition C1 is neutral w.r.t. temporal direction does not preclude backwards causation. But C2 seems to preclude it: if *E* occurs before *C* and $P_{S,t_E}(C) \neq 1$, then the most similar system to *S* where $P(\neg C) = 1$ after time t_C seems to be *S* itself. In this case, $P_{S^C,t_C+}(E) = P_{S^{\neg C},t_C+}(E) = 1$
- b more generally, by the same reasoning, if $P_{S,t_0}(C) \neq 1$, it seems that the most similar system to *S* where *C* does not occur at t_C is *S* itself !
- c the problem comes from the notion of system : a set of initial physical condition. Seems to me that one has to consider states of a system evolving in time

last set of questions

- Question 4. more general questions
- a is your characterization of causation supposed to be "reductive"? If yes, it is not clear that you can elaborate a non-mysterious notion of similarity without causal relations (see Pearl, Woodward who claim to make scientifically respectable sense of similarity or counterfactual intuitions starting from structural equations)
- b did you investigate the epistemology of causal attribution ? Maybe, you could find support or application for your analysis ? Or maybe it is focused on generic causation and not relevant ?

ヘロト ヘアト ヘビト ヘビト